Gradual Tuning: a better way of Fine Tuning the parameters of a Deep Neural Network

نویسندگان

  • Guglielmo Montone
  • J. Kevin O'Regan
  • Alexander V. Terekhov
چکیده

In this paper we present an alternative strategy for fine-tuning the parameters of a network. We named the technique Gradual Tuning. Once trained on a first task, the network is fine-tuned on a second task by modifying a progressively larger set of the network’s parameters. We test Gradual Tuning on different transfer learning tasks, using networks of different sizes trained with different regularization techniques. The result shows that compared to the usual fine tuning, our approach significantly reduces catastrophic forgetting of the initial task, while still retaining comparable if not better performance on the new task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Fine-Tuning and Extension Strategies for Deep Convolutional Neural Networks

In this study we compare three different fine-tuning strategies in order to investigate the best way to transfer the parameters of popular deep convolutional neural networks that were trained for a visual annotation task on one dataset, to a new, considerably different dataset. We focus on the concept-based image/video annotation problem and use ImageNet as the source dataset, while the TRECVID...

متن کامل

An Improvement over Random Early Detection Algorithm: A Self-Tuning Approach

Random Early Detection (RED) is one of the most commonly used Active Queue Management (AQM) algorithms that is recommended by IETF for deployment in the network. Although RED provides low average queuing delay and high throughput at the same time, but effectiveness of RED is highly sensitive to the RED parameters setting. As network condition varies largely, setting RED's parameters with fixed ...

متن کامل

Enhanced Video Super Resolution System using Group-based Optimized Filter-set via Shallow Convolutional Neural Network for Super-Resolution

Scaling up video resolution has conventionally been achieved via linear interpolation, however this method occasionally introduces blurring to the output. Superresolution (SR), an approach to preserve image quality in enlarged still images, has been exploited as a substitute for linear interpolation, however, the output at times exhibits image qualities worse than what linear interpolation prod...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Fine-Pruning: Joint Fine-Tuning and Compression of a Convolutional Network with Bayesian Optimization

When approaching a novel visual recognition problem in a specialized image domain, a common strategy is to start with a pre-trained deep neural network and fine-tune it to the specialized domain. If the target domain covers a smaller visual space than the source domain used for pre-training (e.g. ImageNet), the fine-tuned network is likely to be overparameterized. However, applying network prun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10177  شماره 

صفحات  -

تاریخ انتشار 2017